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Abstract. We study numerically the process of nuclear spin measurement in a solid-state
quantum computer of the type proposed by Kane, by calculating the quantum dynamics of two
coupled nuclear spins on 31P donors implanted in 28Si. We estimate the time of the ‘quantum
swap operation’—the minimum measurement time required for the reliable transfer of quantum
information from the nuclear spin subsystem to the electronic subsystem. Our calculations show
that for realistic values of the parameters this time is of the order of τswap ∼ 5 × 10−5 s. We also
calculate the probability of error for typical values of the external noise.

1. Introduction

Recently, a new implementation of a solid-state quantum computer was proposed by Kane [1].
Kane’s idea is to use nuclear spins of 31P donors in silicon as the quantum bits (qubits). These
1/2 spins are known to exhibit very large relaxation times because of their poor contact with
the environment [2]. At low temperatures, when there are no thermally excited electrons
in the conduction band, this interaction with the environment is mediated primarily by the
magnetic field and hyperfine interaction with s electrons localized on the donor. However,
not all s electrons are equally important for this mediation. The electrons of inner shells are
localized within one lattice cell and are also relatively weakly coupled with the environment.
Of five outer electrons owned by a 31P atom (one more than 28Si), four form valence bonds
with surrounding 28Si atoms, while the fifth is given to the conduction band to form a loosely
bound hydrogen-like s state in the field of the positively charged donor. Since the motion of
this electron is described in terms of the effective mass, which is small in semiconductors, its
localization radius is as large as 30 Å. Hence its state may be controlled by relatively moderate
electric fields. On the other hand, the exchange interaction between loosely bound electrons
located on different donors results in a weak indirect coupling between their nuclear spins [3],
which is necessary for performing, e.g., the quantum ‘control–not’ operation.

A schematic illustration of the quantum computer proposed by Kane is shown in figure 1,
for a two-qubit realization. Two 31P donors are implanted in silicon and subjected to an external
dc magnetic field of about B = 2 T. This creates a Zeeman splitting of the nuclear spin levels
of about 3.5×107 Hz, and the Zeeman splitting of electron levels of about 5.6×1010 Hz (much
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Figure 1. Two 31P donors in silicon. The nuclear spins are coupled to the outer electrons by the
hyperfine interactions, which can be controlled by the A-gates. The electrons are mutually coupled
via the exchange interaction, which can be controlled by the J -gate.

smaller than the splitting between the ground and the lowest excited hydrogen-like states of
an electron, which is 15 meV [4,5]). The hyperfine coupling constant for 28Si:31P is 29 MHz.
Since this constant is proportional to the probability of finding the electron near the nuclei,
it can be decreased by effects that attract the electron away from the 31P nucleus, which in
the device depicted in figure 1 can be accomplishment by applying a positive voltage to the
gates labelled A1 and A2. Similarly, the exchange interaction between the electrons located
on different donors may be controlled by applying positive or negative voltage to the J -gate
in figure 1, thereby changing the overlap of the electron wave functions.

In this article, we do not consider the actual process of quantum computation, but instead
focus on the retrieving of the result after the computation has been completed. The weak
coupling of the nuclear spins with their environment, which is essential to avoid the decoherence
that will spoil the quantum computation, makes this retrieval a highly nontrivial task. In
particular, it cannot be achieved by means of existing NMR methods, since their sensitivity is
insufficient for detecting the signal from a single nuclear spin. Recognizing this, Kane proposed
in reference [1] a special measurement procedure based on transferring the information about
the spin state of the system to its charge state—a ‘quantum swap operation’. (See also
reference [6] which addresses the measurement of an isolated nuclear spin on a single Te atom
instead of the relative state of two coupled nuclear spins.) In the following, we simulate the
measurement procedure proposed by Kane in reference [1] and estimate its optimal duration
and minimum probability of error. In spite of the fact that the process of measurement is
supposed to be adiabatic, we do not use in our analysis the adiabatic approximation. Since the
system exhibits a level-crossing behaviour, this approximation is inapplicable, and we have to
solve the equations numerically.

2. Eigenenergies and eigenstates

The Hamiltonian of the system is

H = 2µBB(Ŝ1z + Ŝ2z) − 2gnµnB(Î1z + Î2z) + 4A1Ŝ1 · Î1 + 4A2Ŝ2 · Î2 + 4J Ŝ1 · Ŝ2 (1)
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where Ŝi and Îi are electron and nuclear spin operators corresponding to donors 1 and 2,
µB and µn are the Bohr and nuclear magnetons, gn = 1.13 is the nuclear g-factor, B is the
external magnetic field, Ai are the hyperfine interaction constants for nuclei 1 and 2, and J is
the constant of exchange interaction between the electrons.

The Hamiltonian H can be represented by a 16 × 16 matrix in the basis of states with
definite electron and nuclear spin projections. Since the total projection of the spin on the
field direction is conserved, all possible states fall into five invariant subspaces, corresponding
to its values −2, −1, 0, 1, and 2. In what follows, we will be interested only in the states
with Sz� + Iz� = −1, which are used for measuring the nuclear spin states. Hence we may
focus on the following reduced basis of four states: |↓↓〉e|↓↑〉n, |↓↓〉e|↑↓〉n, |↓↑〉e|↓↓〉n, and
|↑↓〉e|↓↓〉n. In the reduced basis, the Hamiltonian can be represented by the 4 × 4 matrix

H =



J − 2µBB 0 2A1 0

0 J − 2µBB 0 2A2

2A1 0 2gnµnB − J 2J
0 2A2 2J 2gnµnB − J


 . (2)

For simplicity, we henceforth assume that A1 = A2 = A. Then the Hamiltonian is symmetric
with respect to donors 1 and 2 and the eigenstates are either symmetric or antisymmetric with
respect to interchanging them. The two symmetric states, |E1〉 and |E2〉, have total electron
and nuclear spins S� = 1 and I� = 1. The corresponding eigenenergies are given by

E1 = gnµnB + J − µBB +
√
(µBB + gnµnB)2 + 4A2 (3)

E2 = gnµnB + J − µBB −
√
(µBB + gnµnB)2 + 4A2 (4)

and the corresponding (unnormalized) eigenvectors are

|E1〉 = −(2gnµnB + J − E1)|↓↓〉e|↓↑ + ↑↓〉n + 2A|↓↑ + ↑↓〉e|↓↓〉n (5)

|E2〉 = −(2gnµnB + J − E2)|↓↓〉e|↓↑ + ↑↓〉n + 2A|↓↑ + ↑↓〉e|↓↓〉n. (6)

The eigenenergies E1 and E2 are linear functions of J (see figure 2) and the structure of the
corresponding eigenstates is independent of J (see figure 3).

The Hamiltonian H also has two antisymmetric states, |E3〉 and |E4〉, with total spin
S� + I� = 1. The energies E3 and E4 are given by

E3 = gnµnB − J − µBB +
√
(µBB + gnµnB − 2J )2 + 4A2 (7)

E4 = gnµnB − J − µBB −
√
(µBB + gnµnB − 2J )2 + 4A2. (8)

The corresponding (unnormalized) eigenvectors are

|E3〉 = −2A|↓↓〉e|↓↑ − ↑↓〉n − (2µBB − J + E3)|↓↑ − ↑↓〉e|↓↓〉n (9)

|E4〉 = −2A|↓↓〉e|↓↑ − ↑↓〉n − (2µBB − J + E4)|↓↑ − ↑↓〉e|↓↓〉n. (10)

Unlike the energies of symmetric states, E3 and E4 are nonmonotonic functions of J (see
figure 2). If A were zero, the E3(J ) and E4(J ) curves would intersect at J = µBB/2.
However, since these terms have the same symmetry, they repel to form an avoided crossing
in the form of a ‘bottleneck’ of width 4A at the would-be intersection point (see figure 2,
inset). The corresponding eigenvectors also undergo restructuring at this point. That is, as
J increases from J < µBB/2 to J > µBB/2, |E3〉 transforms from |↓↑ − ↑↓〉e|↓↓〉n with
S� = 0 and I� = 1 into |↓↓〉e|↓↑ − ↑↓〉n with S� = 1 and I� = 0. In other words, the
electron and neutron subsystems exchange their spins. Simultaneously, |E4〉 undergoes the
inverse transformation from |↓↓〉e|↓↑ − ↑↓〉n into |↓↑ − ↑↓〉e|↓↓〉n with the opposite spin
transfer.
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Figure 2. Energy levels of the system of two coupled nuclear and electron spins versus the exchange
coupling J . The inset provides an expanded-scale view of the avoided crossing (‘bottleneck’)
formed by the E3(J ) and E4(J ) curves at J = µBB/2.
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Figure 3. The components of the |E1〉, |E2〉, |E3〉, and |E4〉 states versus J .

One can thus distinguish between the singlet and triplet states of the nuclear subsystem
as follows. Suppose that after the quantum computation has been performed at J → 0, the
electron subsystem is in the |↓↓〉e state. Then the whole system is either in the |E2〉 or in the
|E4〉 state depending on whether the nuclear subsystem is in the |↓↑ + ↑↓〉n or the |↓↑−↑↓〉n
state. If the exchange parameter, J , is then adiabatically increased to J � µBB/2, the
final electron subsystem becomes (respectively) a triplet or singlet state, thus allowing the
information to be transferred from the nuclear to the electron spin subsystem. To accomplish
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the measurement, one can distinguish between these electron spin states through the difference
in their charge properties as described by Kane [1].

3. Simulations of the measurement dynamics

To simulate the dynamics of the measurement, we numerically solve the equation

dρ

dt
= i

h̄
[ρ,H(t) + δH(t)] (11)

where ρ is the 4 × 4 density matrix of the system and H(t) is given by (1) with J (t) linearly
increasing from 0 to 2µBB. We allow the fluctuating error

δH = 4 δA1(t)Ŝ1 · Î1 + 4 δA2(t)Ŝ2 · Î2 (12)

to account for voltage noise in the A-gates. The random classical quantities δA1 and δA2 are
assumed to have zero averages and correlation time, τc, much shorter than all the dynamic
timescales. Following Abragam [7], we may rewrite the equation for the density matrix in the
form

dρ

dt
= − i

h̄
[H, ρ] − τc

h̄2 [δH(t), [δH(t), ρ]] (13)

where the horizontal bar denotes averaging over realizations of the fluctuations. We estimate the
spectral density of fluctuations of A1 and A2 using the spectral density of voltage fluctuations
for room-temperature electronics: SV = 10−18 V2 Hz−1 and dA/dV ∼ 30 MHz V−1 (see [1]).
The system is assumed to be initialized in the |E4〉 state.

Figure 4 shows the time dependencies of the occupation probabilities of the eigenstates
|E1〉–|E4〉 for the duration of the measurement during the measurement process. In the figure,
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Figure 4. The time evolution of the occupancies of the |E1〉–|E4〉 states during the measurement
(0 � t � T ). The quantitiesCi(t) denote the expansion coefficients of the wave function in terms of
the eigenstates |Ei〉. The duration of the measurement is T = 5.7×10−6 s, the hyperfine interaction
constant is A/h = 2.9 × 107 Hz, and the noise spectral density is SA/h2 = 3.5 × 10−3 Hz.
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we have taken the duration of the measurement to be T = 5.7×10−6 s, the hyperfine interaction
constant to beA/h = 2.9×107 Hz, and the noise spectral density to beSA/h2 = 3.5×10−3 Hz.
It is readily seen that increasing J at a finite rate results in a finite probability of exciting the
system from |E4〉 into |E3〉, creating one source of measurement error. Another source of error
is noise-induced ‘escape’ into |E1〉 and |E2〉 states. Note that the system cannot be excited into
these states in the absence of noise because of their different symmetries. Since the fluctuations
of A1 and A2 violate the symmetry with respect to exchange of donors 1 and 2, they make
this excitation possible. The different shapes of the curves representing |C1(t)|2 and |C2(t)|2
are explained by the ‘restructuring’ of the eigenstate |E4〉 at J = µBB/2: the noise-induced
transitions are accompanied by flipping one nuclear spin and one electron spin in opposite
directions. Noise also contributes to a probability of transition to |E3〉.

Figure 5 shows the dependence of the final amplitude of the |E4〉 state on the duration of
the measurement (solid curve). For small times T , the probabilityP4 = |C4|2 → 0 because the
short-term dynamics of the electrons is only weakly affected by the hyperfine interaction, and
the electron subsystem retains its spin during the course of the measurement. For sufficiently
large times T , P4 tends to 1 according to the law

1 − |C4|2 ∝ exp(−T/τ).

For the representative values B = 2 T and A/h = 2.9 × 107 Hz, one obtains τ−1 =
5.7 × 105 s−1.
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Figure 5. The amplitude of |E4〉 versus the duration of the measurement for B = 2 T and
A/h = 2.9×107 Hz (solid curve). The dash–dotted and dashed curves show the same dependences
for A/h = 2.9 × 108 Hz and A/h = 2.9 × 109 Hz, respectively.

To understand why τ−1 is three orders of magnitude smaller than A, we calculated the
same curve for A/h = 2.9 × 108 Hz and A/h = 2.9 × 109 Hz (dash–dotted and dashed
curves). Figure 6 shows the logarithmic plot of τ−1 versus A. By scaling A, we found that
τ−1 ∝ A2/2µBBh̄. This result can be readily explained. The width of the gap between the
states |E4〉 and |E3〉 is #E = 4A (see figure 2, inset), and the corresponding interval of J is
also of the order of A. Hence T/τ ∼ #E#t/h̄, where #t is the time of passage of the system
through the bottleneck region.
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Figure 6. The characteristic time τ versus the hyperfine interaction constant A.

If it were not for the gate-voltage noise, the measurement error could be made vanishingly
small just by increasing the duration of the measurement. However, because of noise, the
error passes through a minimum as a function of the duration and then increases again. The
details of the behaviour of the measurement error are shown in figure 7. The minimum error
(1 − |C4|2)min is proportional to the noise spectral density SA (see figure 8) and is of the order
of 10−6 for typical values of noise.
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Figure 7. The measurement error, 1 − |C4|2, versus the duration of the measurement for different
levels of gate-voltage noise: SA/h

2 = 3.5 × 10−3 Hz (∗), 3.5 × 10−4 Hz (solid line), and
3.5 × 10−5 Hz (�).
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